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Numerical solutions using the Finite Element Method (FEM) of healthy one-dimensional bio-heat transfer and 

cancerous tissue together with the Magnetic Fluid Hyperthermia treatment have been worked out successfully. 

The bioheat transfer equation was created by modifying the Pennes equation by adding the physiological 

parameters in each layer. Each layer shows the characteristics of tissue. Each layer represents an independent 

biological tissue characterized by temperature-dependent physiological parameters and linear temperature-

dependent metabolic heat generation. Magnetic fluid hyperthermia (MFH) is used as an external heat source to 

heat the cancerous area. The magnetic field strength used is 6.5 kA and the frequency of 500kHz in MFH can 

heat cancer tissue without affecting healthy tissue. In a transient state MFH treatments can heat up cancerous 

tissue without damaging healthy tissue as indicated by an increase in the temperature of the cancer tissue 

according to the standard temperature of the MFH treatments. 
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1. INTRODUCTION 

Bioheat transfer is a heat and mass transfer event in the 

human body that depends on organ systems, blood flow 

and the thermal response of body tissues to external 

stimulus [1]. External stimulus that causes thermal 

responses in cancer therapy are called thermal therapies 

[2]. The thermal source in thermal therapy is 

electromagnetic waves [3]. The effect of blood flow on 

heat transfer in living tissue has been studied for more 

than a century, one of the experimental studies was 

conducted by Bernard [4]. Bioheat transfer modeling 

studies are very useful in the field of thermal-based 

medicine to predict the temperature distribution in body 

tissues due to experimental temperature data are not 

widely available. There are two techniques for measuring 

body temperature, namely invasive and noninvasive. 

Invasive temperature measurement techniques tend to be 

expensive and provide few points of measurement. Non-

invasive temperature measurement techniques, such as 

thermal magnetic resonance imaging, allow volumetric 

temperature measurement. However, Magnetic resonance 

imaging has limitations due to high cost and low thermal  
*Email Address: febri.dwi@sd.itera.ac.id 

 

resolution [5, 6]. Furthermore, Mathematical modeling 

research on the thermal interactions between blood 

vessels and tissues has become an interesting research 

topic. The first quantitative relationship that describes 

heat transfer in human tissues and the effect of blood flow 

on tissue temperature is in a continuous manner was 

presented by Harry H. Pennes, a researcher at the College 

of Physicians and Surgeons of Columbia University. The 

equation that he derives is called the Pennes bioheat 

equation. Pennes was developed by using bioheate 

equation with heat transfer and blood perfusion, many 

researchers tried to solve it for a variety of applications, 

both numerically. and analytically. The solution of the 

Pennes bioheate equation is obtained with cartesian, 

cylindrical and spherical coordinates [7, 8, 9]. Durkee et 

al derived the analytical solution of the classical bioheat 

equation using eigenfunctions for spherical and cartesian 

coordinates and cylindrical coordinates [10, 11]. In both 

cases, a constant heat source is used as a green function to 

solve the classic bioheat equation for time-dependent 

sources. Bagaria and Johnson used a variable separation 

method to obtain a one-dimensional solution to estimate 
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the temperature in two concentric spherical regions [12], 

On the other hand, the source term is described by an 

exponential function validated experimentally [13]. 

Rodrigues et al obtained an analytical solution for the 

one-dimensional Pennes bioheate equation in a multi-

layer region that depends on a heat source [14]. Sakrar 

presents an analytical solution for the steady Pennes 

bioheate equation in a multi-layer structure [15]. The 

temperature distribution in each layer is derived 

separately and the conditions of interface temperature and 

heat flux compatibility are used to determine the complete 

solution. 

In the last few decades, this Pennes equation has been 

used to model the magnetic fluid hyperthermia (MFH) 

cancer therapy [12]. MFH is injecting magnetic 

nanoparticles immersed in liquid into the target tissue to 

absorb energy at a higher rate than the surrounding tissue 

from an externally applied electromagnetic field [16]. 

Previous research has modeled bioheat transfer under 

steady state conditions [17]. This study aims to make 

models and simulations of bioheat transfer in healthy 

tissue and cancer and to see the temperature distribution 

of each tissue layer due to the transient thermal response 

of MFH. The bioheat transfer equation was created by 

modifying the Pennes equation by adding physiological 

parameters in each tissue layer. Numerical solutions of 

equations and simulation of temperature distribution of 

each network layer using the finite element method. 

 

2. METHODOLOGY 

A. Pennes Bio-heat Transfer Equation in Multilayer 

Tissue 

The Pennes equation is used for the analysis of heat 

transfer in living tissue which describes the effect of 

blood flow on the temperature distribution in tissues 

where the absorption or heat source is distributed in a 

volumetric temperature distribution. This study uses the 

basic equation. Only the one-dimensional case with 

constant thermal parameter values is used, which is a 

good approximation when there is a propagating heat 

source. The bioheat transfer equation in cartesian 

coordinates in a multi-layer region is expressed in 

equation one: 
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bloodstream ( )( )ibbbbi TTc − , and heat generation 

( )iP , which represents the contribution of volumetric heat 

generation, converted from some form of energy such as  

 

electromagnetic, ultrasonic or other heating modes. 

Metabolic heat generation is another type of heat input 

resulting from the conversion of biochemical energy in 

the tissue. Here, the rate of metabolic heat generation in 

the tissue layer and the tissue thermal conductivity are 

assumed to be uniform while the explanation of the 

parameter definitions in equation (1) is presented in Table 

I. 

 

Table I. Pennes bioheat transfer equation parameters[1] 
Parameter Unit Description 

  g/cm3 density of tissue 

c J/g C heat capacity of tissue 

k W/cm C the thermal conductivity of tissue 

T oC temperature of tissue 

wb s-1 Perfusion of blood 

cb J/g C heat capacity of blood 

Tb oC blood temperature 

Qm W/cm3 metabolic heat generation 

 

B. Boundary and Initial Conditions 

The first, second and third type boundary conditions with 

temperatures on the inner and outer surfaces are assumed 

in equations (2) and (3). The temperature and heat flow 

must meet the boundary conditions for continuity at the 

tissue interface stated in equations (6) to (8). The initial 

temperature depends spatially in the equation (8). 

• Inner surface in the first layer ( )1=i  

( ) ( ) ininin CtxTBtx
x

T
A =+




,, 010

1   (2) 

• Outer surface of nth layer 

( ) ( ) outnnoutn

n

out CtxTBtx
x

T
A =+




,,   (3) 

• Inner Interface of  ith layer 

( ) ( )txTtxT iiii ,, 111 −−− =     (4) 

( ) ( )tx
x

T
ktx

x

T
k i

i

ii

i

i ,, 1

1

11 −

−

−−



=




  (5) 

• Outer interface of  

( ) ( )txTtxT iiii ,, 1+=     (6) 

( ) ( )tx
x

T
ktx

x

T
k i

i

ii

i

i ,, 1

1



=



 +

+
   (7) 

• Initial conditions 

( ) ( )xTtxT ii 00, ==     (8) 

Parameters in (2) and (3) can be selected to obtain the 

Dirichlet, Neumann or Robin boundary conditions. 

 

C. Heat generation 

The temperature distribution in bioheat transfer is 

influenced by external stimuli. Cancer patients who 

undergo treatment will receive an external stimulus, 

which can be in the form of electromagnetic waves, 

ultrasonic waves, or magnetic fluid hyperthermia [8]. 

Bagaria and Johnson describe the external stimulus as a 

polynomial equation 
2

210 xPxPPP ++=                 (9) 
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where P0, P1, and P2 are constants [6]. Heat source 

parameter values for the four cases are shown in Table II. 

 
Table II. Value of heat generation parameters for six cases 

Case P0 P1 P2 Pconst 

( )3cm
W

 ( )4cm
W

 ( )5cm
W

 ( )3cm
W

 

1 0.7 -1.4 0.7 0.07 

2 0.3 -0.2 -0.1 0.09 

3 0.1 0.5 -0.6 0.115 

4 

5 

6 

0.5 

0.0 

0.1 

-0.2 

1.5 

0.8 

-0.3 

-1.5 

-0.7 

0.17 

0.225 

0.28 

 

Salloum experimentally described the external stimulus in 

the form of a Gaussian distribution [13]. 
22 xxAeP −=          (10) 

where x  is the radial distance from the injection site, x  

is a parameter that determines how far the nanoparticles 

are spread from the injection site, and  is the maximum 

force of the volumetric heat generation rate ( ). 

 

D. Numerical Solution Title, Authors Name & Affiliation  

The approximate solution of the 2-1 bioheat transfer 

equation first discretizes the line domain Ω into a number 

of finite elements, the element nodes are located at the 

positions 
jx , for 1,,1 += Nj  , where 01 =x and 

LxN =+1 , as shown in Figure 1. In each element a certain 

point is identified which is called the vertex or nodal 

which will play an important role in the formation of the 

finite element [19]. A collection of elements and vertices 

forming a domain is called a finite element mesh (see 

Figure 1). 

 

 
Figure 1. Discretization of the finite element or one 

dimensional domain for model problems 

 

The jth Galerkin projection of equation is expressed in 

equation 11. 

(11) 

where the index j runs over an appropriate number of 

nodes determined by the degree of the element 

interpolation functions and by the specified boundary 

conditions Dirichlet and Neumann. Substitute equation 

the finite element expansion of the numerical solution, 

 

                                     (12) 

 

and a corresponding expansion for heat generation 

 

              

 

where  is a number of unique global node. Rearranging 

and collecting all nodal projections, derive a system of 

linear ordinary differential equations (ODEs), 

  (14) 

where  is the vector of the unknown temperature at each 

node. 

 TNN EE
TTTTT ,,,, 121 −            (15) 

where M is a global square mass matrix,  is a global 

square diffusion matrix, and  is a properly constructed 

right-hand side. 
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Galerkin finite element system form 
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for , Rearranging (18) 
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For The first three terms on the left-hand 

side of (19) contribute a weighted average of the time 

derivative at three neighboring nodes. The sum of the 

weights enclosed by the parentheses is equal to unity. 

When the element size is uniform, 

, the Galerkin equations 

simplify to 
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for . The first term on the right-hand side of 

(21) is recognized as the central difference approximation 

of the second derivative, , evaluated at the jth 

node. The three terms on the left-hand side express a 

weighted average of the time derivative at the ith and 

adjacent nodes. A similar averaging of the source function 

is implicit in the constant term on the right-hand side, . 

Equation (2 to 14) provides us with a coupled system of 

first-order, linear, ordinary differential equations (ODEs) 

in time, , for the unknown node temperatures, . The 

coupling of nodal temperatures on the left-hand side 

mediated through the global mass matrix. The system (2-

14) is integrated in time using a numerical Crank–

Nicolson method for solving initial-value problems 

involving ordinary differential equations [18,19]. 

 

                   (22) 

Rearranging, derive a linear algebraic system, 

    (23) 

The tridiagonal coefficient matrix on the left-hand side is 

given by 

   (24) 

 

and the right-hand side is given by 

 

                                           (25) 

 

 

 

3. RESULT AND DISCUSSION 

Comparison between the transient temperature profile for 

a uniform heat source which is called constant heat 

generation and a non-uniform heat source which is called 

quadratic heat generation. The heat source is assumed to 

be in the tumor tissue with a tissue length of 1 cm. In this 

condition the network is considered one layer. The 

material property used in this calculation is magnetite, 

monodisperse with a diameter of 12 nm. The magnetic 

field strength used is 6.5 kAm-1 and a frequency is 

500kHz. Bioheat parameter values used are 

31000
m
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b = ,

Ckg
J

b oc 4200= , CTT o

cb 37== , 

mlsmlb 0005.0= , 3
1

0
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W
mQ = , and 

Cm
W

ok 55.01 = . The temperature boundary conditions 

parameters on the inner and outer surface are 

Ccm
W

inA 0= , 
Ccm

W
inB 21= , ( )= CCC

m
W

in
ˆˆ

2 , 

0=outA , 1=outB , C37 o=outC . The number of 

elements used in the numerical solution is 25 elements. 

The value t used for st 100= and st 100= for each 

s2.0  iteration. In this figure, the temperature distribution 

of the steady state is higher than the transient, because in 

a steady state the temperature does not change with time 

or in other words it is constant. In transient conditions or 

also called temporary conditions, the temperature will 

change over time. The temperature when it is above the 

ideal minimum temperature is hyperthermia, this can 

indicate that the time needed to heat the tumor tissue 

measuring 1 cm is 300 s.  

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

Figure 2. Single layer temperature distribution profile 

with constant and quadratic heat source for transient state 

Here, Figure 3 shows the comparison of transient 

temperature profiles for constant heat generation and 

quadratic heat generation on two layers, namely tumor 

tissue and healthy tissue. The parameter values used are 

3

1 1.1 −= cmg , 3

2 1 −= cmg , 
31 −= cmgb , 

11

21 2.4 −−=== CkgJccc o

b
, CTT o

cb 37== , 

13105
21

−−== sbb  , 30
21

−== cmWQQ mm
, 

113

1 105.5 −−−= CcmWk o , 113

2 105 −−−= CcmWk o . The 

temperature boundary conditions parameters on the inner 

and outer surface are as follows 0=inA , 

1=inB , ( )= CCCin
ˆˆ , 0=outA , 1=outB , C37 o=outC . 

The number of elements used in the numerical solution is 

100 elements. The value t  used for st 100= and 

st 300=  is s2.0 for each iteration. The two-layer 

condition also shows the temperature distribution, a 

steady state, is higher than the transient. The temperature 

at the two layers in the tumor tissue is not different from 

Figure 2. In the figure, it can be seen that the healthy 

tissue which is located close to the tumor tissue has an 

increase in temperature but is below the ideal temperature 

of hyperthermia so that it does not damage and affect the 

nature of the healthy tissue. When st 300=  is seen that 

the temperature rises with an increase in temperature to 

the ideal minimum of hyperthermia, this can indicate that 

the time needed to heat 4 cm of tissue is 300 s. 

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

Figure 3. Two-layers temperature distribution profile 

with constant and quadratic heat source for transient state 

Model validation is done by comparing the results of the 

model that describe bioheat transfer with the analytical 

results. The analytical results were obtained from the 

results of the reduction by Zhong-Shan Deng. The result 

of reduction by ZhongShan Deng is a bioheat transfer 

equation for one layer so that the boundary conditions of 

the inner and outer layers of the layer are not used for this 

model. The model results were also validated with the 

results of the MFH experiment from Salloum et al. The 

experiment was conducted to measure the temperature in 

the hind limb muscle tissue of mice induced by injection 

of magnetic nanoparticles during the in vivo MFH 

experiment [12].  

 

4. CONCLUSIONS 

This study managed to develop a model that uses a 

transfer bioheat Pennes basic equation that describes the 

transfer of heat to healthy tissue and cancer cells as well 

as therapies are MFH. This shows that the model created 

can be used to calculate the temperature distribution 

under various other boundary conditions and that several 

tissue layers have been used in this model. Transient 

temperature distribution simulations on a tissue with one 

layer and two-layer variations using the finite element 

method have also been successfully carried out. MFH 

treatment on tissue causes an increase in temperature in 

cancer tissue and does not affect healthy tissue. 
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