Identify Water Treatment Plant Capability in Removing Microplastic : Lab Scale Simulation and Direct Sampling

Wa Ode Sitti Warsita Mahapati, Emenda Sembiring, Syarif Hidayat


The challenges of Drinking Water Treatment Plants (DWTP) are increasing due to the presence of new types of pollutants that can contaminate raw water and increase the processing load on the installation. One of the pollutants that is currently being discussed a lot is plastic particles measuring < 5 mm which are called microplastics. Based on these factual conditions, it is also important to identify the generation of microplastics at the raw water treatment plant in Bandung-Indonesia. In this study, laboratory-scale water treatment simulations and sampling at two drinking water treatment plants in Bandung City were carried out using the grab sampling method to identify their generation in the laboratory. The results showed that microplastics were still found in all processing units, this was in line with laboratory-scale processing which showed that the processing still left residue at the final stage of the experiment. So, it can be concluded that further research is needed to optimize the performance of conventional water treatment units in removing microplastics and the mechanism that can be applied to prevent the spread of microplastics into water bodies.


Microplastic Removal, Identification, Microplastic Abundance, Characteristics, Water Treatment Plant, Particle Types, Bandung – Indonesia

Full Text:



Abuwatfa, Waed & Al-Muqbel, Dana & Al-Othman, Amani & Halalsheh, Neda & Tawalbeh, Muhammad. 2021 : Insights into the removal of microplastics from water using biochar in the era of COVID-19: A mini review. Case Studies in Chemical and Environmental Engineering. 4. 100151.

Alam, F.C., Sembiring, E., Muntalif, B.S., Suendo, V. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia). Chemosphere. 2019, doi: j.chemosphere.2019.02.188.

Anderson, P.J., Warrack, S., Langen, V., Challis, J.K., Hanson, M.L., Rennie, M.D. Microplastic contamination in Lake Winnipeg, Canada. Environ. Pollut. 2017 ; 225, 223–231.

Browne, M.A., Crump, P., Niven, S.J., Teuten, E.L., Tonkin, A., Galloway, T., Thompson, R.C. Accumulations of microplastic on shorelines worldwide: sources and sinks, Environmental Science and Technology. 2011, 45 (21): 9175- 9179.

Cole, M., Lindeque, P., Halsband, C.z, Galloway, T.S. Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 2011 ; 62, 2588e2597.

Crawford, C. B dan Quinn, B. Microplastic Pollutants 1st Edition e-Book Elsevier Science. 2017

Churchman, G. J., Gates, W. P., Theng, B. K. G., & Yuan, G. Chapter 11.1 Clays and Clay Minerals for Pollution Control. Handbook of Clay Science. 2006, p. 625–675. doi:10.1016/s1572-4352(05)01020-2

,,,,,,,,Green,D.S.,Kregting,L.,Boots,B.,Blockley,D.J.,Brickle,P.,daCosta,M.,Crowley,Q. A comparison of sampling methods for seawater microplastics and a first report of the microplastic litter in coastal waters of Ascension and Falkland Islands. Mar. Pollut. Bull. 2018 ; 137, 695–701. marpolbul.2018.11.004.

Horton, A. A., Svendsen, C., Williams, R. J., Spurgeon, D. J., & Lahive, E. Large microplastic particles in sediments of tributaries of the River Thames, UK – Abundance, sources and methods for effective quantification. Marine Pollution Bulletin. 2017 ; 114(1), 218–226. doi:10.1016/j.marpolbul.2016.09.0

Kawamura, S. Integrated Design of Water Treatment Facilities. New York: John Wiley & Sons, Inc. 2000

K. Novotna, L. Cermakova, L. Pivokonska, T. Cajthaml, M. Pivokonsky. Microplastics in drinking water treatment – current knowledge and research needs. Sci. Total Environ. 2019 ; 667, 730–740

Koelmans, AA., Nor, N.H.M., Hermsen, E., Kooi, M., Mintenig, SM., France, J.D. Microplastic in freshwater and dringking water : Critical review and assesment of data quality. Water Research. 2019 ; 155, 410-422

Kingfisher J. Micro-Plastic Debris Accumulation on Puget Sound Beaches. Port Townsend Marine Science Center. 2011

Kosuth M, Mason SA, Wattenberg EV. Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE 13(4). 2018 ; e0194970.

Leslie, H.A., Brandsma, S.H., van Velzen, M.J.M., Vethaak, A.D. Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 2017 ; 101, 133–142.

Lestari, A.S., Iqbal R., Soewondo,P. Studi Pengolahan Air Sungai Tanggulan Sub Das Cikapundung Menggunakan Floating Treatment Wetlands Dengan Potensi Partisipasi Masyarakat Sekitar, Jurnal Teknik Lingkungan. 2011 ; Volume 19 Nomor 1, 11-22

Ma, B., Xue, W., Hu, C., Liu, H., Qu, J., & Li, L. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal. 2019 ; 359, 159–167. doi:10.1016/j.cej.2018.11.155

Metcalf dan Eddy. Wastewater Engineering Treatment, Disposal, Reuse. New Delhi: McGraw-Hill Book Company. 1984

Mintenig, S.M., Löder, M.G.J., Primpke, S., Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 2019 ; 648, 631–635.

Mor et-Ferguson, S., Law, K.L., Proskurowski, G., Murphy, E.K., Peacock, E.E., Reddy, C.M. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 2010; 60 (10), 1873-1878.

Na, S.-H., Kim, M.-J., Kim, J.-T., Jeong, S., Lee, S., Chung, J., & Kim, E.-J. Microplastic removal in conventional drinking water treatment processes: Performance, mechanism, and potential risk. Water Research. 2021 ; 202, 117417. doi:10.1016/j.watres.2021.117417

Niriella, D., Carnahan, R.P. Comparison study of zeta potential values of bentonite in salt solutions. J. Dispersion Sci. Technol. 2006 ; 27, 123–131.

Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., Pivokonsky, M. Microplastic in drinking water treatment – Current knowledge and research needs. Science of the Total Environment. 2019 ; 667, 730-740

…..Oladoja, N. A., & Unuabonah, I. E. (2021). The pathways of microplastics contamination in raw and drinking water. Journal of Water Process Engineering, 41, 102073. doi:10.1016/j.jwpe.2021.102073

Pahl, S., & Wyles, K. J. The human dimension: how social and behavioural research methods can help address microplastics in the environment. Analytical Methods. 2017 ; 9(9), 1404–1411. doi:10.1039/c6ay02647h

Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., Janda, V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018 ; 1644–1651.

Prata, JC., Da Costa, JP., Duarte, AC., Rocha Santos, T. (2019): Methods for sampling and detection of microplastics in water and sediment: A critical review. Trends In Analytical Chemistry. 110 (2019) 150-159

Rani, M., Shim, W. J., Han, G. M., Jang, M., Song, Y. K., & Hong, S. H. Benzotriazole-type ultraviolet stabilizers and antioxidants in plastic marine debris and their new products. Science of The Total Environment. 2017 ; 579, 745–754. doi:10.1016/j.scitotenv.2016.11.0

Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D., & Schmitt-Jansen, M. Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment. Environmental Science & Technology Letters. 2017 ; 4(7), 258–267. doi:10.1021/acs.estlett.7b00164

Shruti, V. C., Pérez-Guevara, F., & Kutralam-Muniasamy, G. Metro station free drinking water fountain- A potential “microplastics hotspot” for human consumption. Environmental Pollution. 2020 ; 114227. doi:10.1016/j.envpol.2020.114227

Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type. Environmental Science & Technology. 2017 ; 51(8), 4368–4376. doi:10.1021/acs.est.6b06155

Sun, Y., Yuan, J., Zhou, T., Zhao, Y., Yu, F., & Ma, J. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review. Environmental Pollution. 2020 ; 114864. doi:10.1016/j.envpol.2020.114864

Stolte, A., Forster, S., Gerdts, G., & Schubert, H. Microplastic concentrations in beach sediments along the German Baltic coast. Marine Pollution Bulletin. 2015 ; 99(1-2), 216–229. doi:10.1016/j.marpolbul.2015.07.022

UNEP, United Nations Environment Programme, & UNEP Division of Early Warning and Assessment. UNEP Frontiers 2016 Report: Emerging Issues of Environmental Concern. 2016.

Vinge, S. L., Rosenblum, J. S., Linden, Y. S., Saenz, A., Hull, N. M., & Linden, K. G. Assessment of UV Disinfection and Advanced Oxidation Processes for Treatment and Reuse of Hydraulic Fracturing Produced Water. ACS ES&T Engineering. 2021 ; 1(3), 490–500. doi:10.1021/acsestengg.0c00170

Wang, W., Ndungu, A. W., Li, Z., & Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Science of The Total Environment. 2017 ; 575, 1369–1374. doi:10.1016/j.scitotenv.2016.09.213

Wang, F., Wong, C.S., Chen, D., Lu, X., Wang, F., Zeng, E.Y. Interaction of toxic chemicals with microplastics: a critical review. Water Res. 2018 ; 139, 208–219.

Wang, T., Li, B., Zou, X., Wang, Y., Li, Y., Xu, Y., Yu, W. Emission of primary microplastics in mainland China: Invisible but not negligible. Water Research. 2019 ; doi:10.1016/j.watres.2019.06.042

Wang, Z., Lin, T., Chen, W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci. Total Environ. 2020 ; 700, 134520.

Waller, C.L., Griffiths, H.J., Waluda, C.M., Thorpe, S.E., Loaiza, I., Moreno, B., Pacherres, C.O., Hughes, K.A. Microplastics in the Antarctic marine system: an emerging area of research. Sci. Total Environ. 2017 ; 598, 220–227.

…..World Health Organization. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. 2017. Geneva:. Licence: CC BY-NC-SA 3.0 IGO.

Wright, S. L., & Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue? Environmental Science & Technology, 51(12), 6634–6647. doi:10.1021/acs.est.7b00423

Wright, S. L., & Kelly, F. J. Plastic and Human Health: A Micro Issue? Environmental Science & Technology. 2017; 51(12), 6634–6647. doi:10.1021/acs.est.7b00423

Zhang, Y., Diehl, A., Lewandowski, A., Gopalakrishnan, K., & Baker, T. Removal efficiency of micro- and nanoplastics (180 nm–125 μm) during drinking water treatment. Science of The Total Environment. 2020 ; 137383. doi:10.1016/j.scitotenv.2020.137383

Zhou, G., Wang, Q., Li, J., Li, Q., Xu, H., Ye, Q., … Zhang, J. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism. Science of The Total Environment. 2020 ; 141837. doi:10.1016/j.scitotenv.2020.141837


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Supported by :

Indexed by :